
An introduction to the 
back-propagation 

algorithm
by Dominic Waithe



Why neural networks
• Conventional algorithm: a computer follows a set of 

instructions in order to solve a problem. Fine if you know 
what to do….. 

• A neural network learns to solve a problem by example.  
- Provides a mapping from one space to another.  
- The input space could be images, text, genome 
sequence, sound.  
- The output is often a classification (dog, cats, guinea 
pigs). 

• In many challenging examples a neural network can learn 
how to recognise and classify things better than a custom 
designed conventional algorithm.



A basic Feedforward neural network
• Two input nodes (2D data), one hidden layer (with 2 

nodes) and two output nodes (= 2 classes).

inputs hidden layer

biases

output layer
output

output



A basic Feedforward neural network
• A network transforms the inputs to the outputs, which in 

this case are both numbers. 

inputs hidden layer

biases

output layer

output

output

outputs  i1 = 0.0,  i2 = 1.0
input   i1 = 0.5,  i2 = 0.2 outputs  i1 = 1.0,  i2 = 0.0
input   i1 = 0.8,  i2 = 0.5

input   i1 = 0.5,  i2 = 0.9 outputs  i1 = 1.0,  i2 = 0.0
outputs  i1 = 1.0,  i2 = 0.0input   i1 = 0.2,  i2 = 0.5
outputs  i1 = 1.0,  i2 = 0.0input   i1 = 0.2,  i2 = 0.5 outputs  i1 = 1.0,  i2 = 0.0input   i1 = 0.2,  i2 = 0.5 outputs  i1 = 1.0,  i2 = 0.0input   i1 = 0.2,  i2 = 0.5etcetc



• How do we make the inputs generate the outputs we want? 

• Answer: By transforming the data through a series of non-
linear transformations at least in the case of neural networks. 

• What does that look like?

How do we train the network



input i0

input i1

A basic Feedforward neural network
input training data A
input training data B

classification area for A
classification area for B

Through our non-linear transformation we are able 
to bisect the data with a straight-line

You can see this at http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


• Two inputs (2D data), one hidden layer (with 2 nodes) and 
two outputs (= 2 classes).

inputs hidden layer outputs

biases

A basic Feedforward neural network



• Hidden layers are layers which are not inputs or outputs. 

inputs hidden layer output layer

biases

output

output

w1

w2

w3

w4

w5

w6

w7

w8

b1 b2 b3
b4

A basic Feedforward neural network



• Each node comprises a summation and an activation 
function. 
The activation is the non-linear component of network.

hidden layer

H1
b1

w3

w1

∑

H1
b1

w3

w1

∑

A basic Feedforward neural network



• Output layers are the final layer and otherwise are 
indistinguishable from hidden layer.

inputs hidden layer outputs

biases

A basic Feedforward neural network

output

output



• The bias ensures that any input value can be mapped to 
any feasible output value. For the hidden layers and 
output layers.

inputs hidden layer

biases

output layer
output

output

A basic Feedforward neural network



Extra slide bias

Without bias With bias



• The edges connect the nodes. Each edge connecting a 
node has a weight wn e.g (w6 = 0.5), the bias also has a 
weight denoted b1 or b2.

inputs hidden layer

biases

w1

w2

w3

w4

w5

w6

w7

w8

b1 b2 b3
b4

output layer
output

output

A basic Feedforward neural network



Training the network

• Trained through Gradient Descent 
- Forward pass  
- Backward pass



The Backward pass
• Gradient decent. A classical approach to optimisation is 

to calculate the gradient of our error function in response 
to changes in parameters (e.g. weights). We then move 
down the gradient to find the optimum solution.

w0

w1

Above) How our optimisation would look if we had only two weights to optimise. Reality 
is hyper-dimensional. 
source: https://en.wikipedia.org/wiki/Gradient_descent

so how do we do this.

https://en.wikipedia.org/wiki/Gradient_descent


• First of all we generate the predictions of the 
network with our inputs by feeding them through 
the network.

The Forward pass

output

output

0.5

0.1



inputs hidden layer
w1

w2

w3

w4

w5

w6

w7

w8

b1 b2 b3
b4

output layer
output

output

The Forward pass
• The weights can be initialised in a number of ways.  

One way (easiest) is to choose random values. 

0.5

0.1



• The hidden layers comprise a summation and an 
activation function.

hidden layer

H1
b1

w3

w1

∑

The Forward pass

al
j



The Forward pass
(Activation functions)

source: https://www.quora.com/Do-people-use-power-functions-like-x-3-or-x-5-as-activation-functions-in-artificial-neural-networks

The non-linearity is what gives the network its power over other 
frameworks. Any can be used but must be differentiable 

(analytically).   
Note: not all activation functions are differentiable in their entirety but we cheat and over-write these problematic areas. 

see https://dwaithe.github.io/blog_20170508.html for more details 

http://www.quora.com/Do-people-use-power-functions-like-x-3-or-x-5-as-activation-functions-in-artificial-neural-networks


• First of all we generate the predictions of the 
network with our inputs by feeding them through 
the network.

The Forward pass

output

output

0.5

0.1

0.2

0.3

0.6

0.7



• Once outputs calculated. We calculated the error

The Forward pass

output

output

0.6

0.7

the value we want 
given our inputs

e.g 0.9

e.g 0.1
1 11

2 22

The value our network 
generates

ETotal = E1   +  E2



The Backward pass

inputs hidden layer
w1

w2

w3

w4

w5

w6

w7

w8

b1 b2 b3
b4

output layer
output

output



The Backward pass
• Gradient decent. A classical approach to optimisation is 

to calculate the gradient of our error function in response 
to changes in parameters (e.g. weights). We then move 
down the gradient to find the optimum solution.

w0

w1

Above) How our optimisation would look if we had only two weights to optimise. Reality 
is hyper-dimensional. 
source: https://en.wikipedia.org/wiki/Gradient_descent

so how do we do this.

https://en.wikipedia.org/wiki/Gradient_descent


inputs hidden layer
w1

w2

w3

w4

w5

w6

w7

w8

b1 b2 b3
b4

output layer
output

output

The Backward pass
• Now we work backward through all the weights and biases updating 

the weights so that the network will produce a result closer to what we 
want. 

0.5

0.1



The Backward pass

source: https://en.wikipedia.org/wiki/Gradient_descent

• Classically there are two ways to calculate the gradient at .  
1) Change the weights small amount and see how the total error 
changes.  
2) If the function is differentiable you can calculate the derivative 
directly (analytical method).

• The second method is faster and more accurate, but in maths, not all functions 
are differentiable. 

• Fortunately all the functions chosen for neural networks are differentiable.  
Note: not all activation functions are differentiable in their entirety but we cheat 
and over-write these problematic areas. see https://dwaithe.github.io/
blog_20170508.html.

https://en.wikipedia.org/wiki/Gradient_descent


The Backward pass



The Backward pass
• Weights can be quite distant from the output but 

influence everything down stream resulting in large 
composite derivatives at each node.

source: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

e.g. w1 has dependency 
on the outputs (E01, E02), 
activation and summation 
functions of h1. 

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


The Backward pass
• The chain-rule is a calculus method for breaking 

down large equations containing multiple 
derivatives.

• It allows us to calculate the derivate of any weight in 
the network with respect to the output error as long 
as we systematically calculate all the intermediates



The Backward pass

source: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

This is the delta rule.

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


The Backward pass

The weights are updated as follows

w(t+1) = w(t) - 𝛼 

𝛼 is the learning-rate 
w(t+1) is the new weight 
w(t) is the current weight 

is the derivative with respect to the the total error. 



Repeat many times

• Forward pass 

• Backward pass

until convergence, 
error tends to zero.



What I am doing
by Dominic Waithe



Harrier server - hosted in Begbroke, maintained by CBRG, paid for by Micron

NVIDIA Tesla K80 GPU

I run Jupyter Notebooks hosted on the server and  
accessed on my local machine, using keras and 
tensorflow.

2x Intel Xeon E5-2650, 256 RDIMM RAM

What I am using



What I have been working on

I have been using a network specialised for  
segmentation of biological images called U-net.

There is a down-sampling and up-sampling component. 

U-Net: Convolutional Networks for 
Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, Thomas Brox



def get_unet(img_rows,img_cols): 
    """This sets up the U-NET network structure. The same as in  
    https://github.com/jocicmarko/ultrasound-nerve-segmentation 
    except that I use different activation function (not sigmoid) in the 
    last layer and also I use a different loss function (not dice_coef).""" 
    inputs = Input((1, img_rows, img_cols)) 
    conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs) 
    conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1) 
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) 

    conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1) 
    conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2) 
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) 

    conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2) 
    conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3) 
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) 

    conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3) 
    conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4) 
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) 

    conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4) 
    conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5) 

    up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1) 
    conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6) 
    conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6) 

    up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1) 
    conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7) 
    conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7) 

    up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1) 
    conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8) 
    conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8) 

    up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1) 
    conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9) 
    conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9) 

    conv10 = Convolution2D(1, 1, 1, activation=None)(conv9) 

    model = Model(input=inputs, output=conv10) 

    model.compile(optimizer=Adam(lr=1e-5), loss='mse', metrics=['accuracy',accuracy_custom]) 

    return model 

How the model looks like when implemented in Keras



What I have been working on
Microscopy Cell Counting with Fully Convolutional Regression Networks 
Weidi Xie, J. Alison Noble, Andrew Zisserman 

Department of Engineering Science, University of Oxford,UK 

Weidi Xie gave me his latest code for using U-Net  
specifically for counting. Implemented in Keras. 

Want to apply to the goal of counting in phase contrast 
images. Images courtesy of Caroline Scott. 



U-Net variant for density estimation applied to phase 
contrast images

input image ground-truth density predicted density

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 9710
3
10

9
11

5
12

1
12

7
13

3
13

9
14

5
15

1
15

7
16

3
16

9
17

5
18

1
18

7
19

3
19

9
0.0

0.5

1.0

Epoch

Lo
ss

 (‘
m

se
’)

training loss before correction to ground-truth

validation loss before correction to ground-truth

training  loss 8 image s

validation loss 8 images

training loss 32 images

validation loss 32 images So far achieved 85 % 
accuracy with 

32 training images.

Still some work to be done 



Project with Liliana Barber

Courtesy of Angela Lee and Marco Fritzsche

build neural network 
classifier
to decide 

automatically
what type of 

curve is 
present

T-cells trigger intracellular calcium release 
when they touch surface. 



What I will be doing
by Dominic Waithe

BBSRC TRDF Grant, starting in July



Microscopy can be very tedious and time 
consuming.

Hard to automate assays which are used often in 
bioscience research. Too ad-hoc or short-term. 



Online application of neural networks to automate 
microscopy acquisition

Will use recurrent neural network and networks which 
model attention to find and classify cells based on user 
decisions made during training. 



Augmented reality microscope

Users will be updated with classifications using an 
augmented reality display which will overlay graphics 
when looking down eye-piece.



The End
Thank you for your attention

wish me luck.


